Publications

Search my publications at NCBI PubMed , Google Scholar , ORCiD or ResearchGate.

Citations counted by year. Data from Google Scholar.

Research papers since I joined the Institute of Biological Chemistry, Academia Sinica (Taipei, Taiwan)

* sign means corresponding authorship.
# stands for equal contribution
  1. Engineering Nanomolar Potent Protein-based Inhibitors for Papain-like Protease Guided by Residue Correlation Network
    Hung TI#, Hsieh Y-J#, Lu W-L, Wu K-P*, Chang CA*
    BioRxiv preprint on March 15, 2023
  2. Structural basis of transcriptional activation by the OmpR/PhoB-family response regulator PmrA
    Lou Y-C*, Huang H-Y, Yeh H-H, Chiang W-H, Chen C*, Wu K-P*
    BioRxiv preprint on July 21, 2022
    PDB: 7W8C, EMDB: 32354
  3. Cryo-EM reveals the structure and dynamics of a 723-residue malate synthase G
    Ho M-R#, Wu Y-M#, Lu Y-C#, Ko T-P, Wu K-P*
    Journal of Structural Biology accepted, BioRxiv preprint
    PDB: 7YQM, 7YQN, EMDB: 34029, 34030, EMPIAR: 11167
  4. 2.2 Å cryo-EM tetra-protofilament structure of the hamster prion 108−144 fibril reveals an ordered water channel in the center
    Chen E. H-L#, Kao H-W#, Lee C-H#, Huang JYC, Wu K-P*, Chen RPY*
    J. Am. Chem. Soc. 2022, Aug 3;144(30):13888-13894. PubMed PMID: 35857020
    PDB: 7YAT, EMDB: 33719
  5. Tumor suppressor BAP1 nuclear import is governed by transportin-1
    Yang T-J, Li T-N, Huang R-S, Pan M Y-C, Lin S-Y, Lin S, Wu K-P, Wang H-C L,Hsu S-T D
    Journal of Cell Biology 2022,Jun 6;221(6):e202201094., PubMed: PMID: 35446349
  6. Structural basis for the helical filament formation of Escherichia coli glutamine synthetase
    Huang P-C, Chen S-K, Chiang W-H, Ho M-R, Wu K-P*
    Protein Science. 2022 May;31(5):e4304, PubMed PMID: 35481643
    PDB: 7W85, EMDB: 32352
  7. Identification of disease-linked hyperactivating mutations in UBE3A through large-scale functional variant analysis
    Weston KP, Gao X, Zhao J, Kim K-S, Maloney SE, Gotoff J, Parikh S, Leu Y-C, Wu K-P, Shinawi M, Steimel JP, Harrison JS and Yi JJ
    Nature Communications 2021 12, Article number: 6809, PubMed PMID: 34815418
  8. Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir
    Lo HS, Hui PY, Lai HM, He X, Khan KS, Kaur S, Huang J, Li Z, Chan AKN, Cheung HHY, Ng KC, Ho JCW, Chen YW, Ma B, Cheung PMH, Shin D, Wang K, Lee M-H, Selisko B, Eydouc C, Guillemot J-C, Canard B, Wu K-P, Liang P-H, Dikic I, Zuo Z, Chan FKL, Hui DSC, Mok VCT, Wong K-B, Mok CKP, Ko H, Aik WS, Chan MCW and Ng W-L
    ACS Central Science, 2021,May 26; 7(5): 792–802, PubMed PMID: 34075346
  9. Direct Visualization of a 26 kDa Protein by Cryo-Electron Microscopy Aided by a Small Scaffold Protein
    Chiu Y-H , Ko K-T, Yang T-J, Wu K-P, Ho M-R, Draczkowski P, and Hsu S-T D.
    Biochemistry. 2021 Apr 13;60(14):1075-1079 . , PubMed PMID: 33719392
  10. VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism
    Chen Y-H, Huang T-Y, Lin Y-T, Lin S-Y, Li W-H, Hsiao H-J, Yan R-L, Tang H-W, Shen Z-Q, Chen G-C, Wu K-P, Tsai T-F, and Chen R-H.
    Nature communications 2021, 12, Article number: 1322 , PubMed PMID 33637724
  11. Branched Ubiquitination: Detection Methods, Biological Functions and Chemical Synthesis
    Wang Y-S*, Wu K-P*, Jiang H-K, Kurkute P, and Chen R-H*
    Molecules (Review), 2020 Nov 9;25(21):5200., PubMED PMCID: PMC7664869
  12. Insights Into Dynamics of Inhibitor and Ubiquitin-Like Protein Binding in SARS-CoV-2 Papain-Like Protease
    Bosken YK, Cholko T, Lou Y-C, Wu K-P and Chang C-A A.
    Front. in Mol. Biosci. 2020, Aug 4;7:174., PubMed PMCID: PMC7417481
  13. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans
    Yang T-J, Chang Y-C, Ko T-P, Draczkowski P, Chien Y-C, Chang Y-C, Wu K-P, Khoo K-H, Chang H-W, and Hsu S-T D
    PNAS, 2020 January 21, 117 (3) 1438-1446

Research papers when worked at St Jude Children’s Research Hospital (Memphis, Tennessee, US)

  1. Insights into links between autophagy and the ubiquitin system from the structure of LC3B bound to the LIR motif from the E3 ligase NEDD4.
    Qiu Y, Zheng Y, Wu K-P, Schulman BA.
    Protein Science (2017),26 (8), 1674 (Free access)
  2. Deubiqutinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress.
    Fang NN, Zhu M, Rose A, Wu K-P, and Mayor T.
    Nature Communications, (2016), 7, 12907
  3. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.
    Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu K-P, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CRR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters J-M, Stark H and Schulman BA.
    Cell, (2016), 165, 1440- 1453
  4. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes.
    Mulder MPC, Witting K, Pruneda JN, Berlin I, Wu K-P, Merkx R, Neefjes J, Schulman BA, Komander D, Oualid FE and Ovaa H.
    Nature Chemical Biology, (2016), 12, 523-530
  5. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes.
    Zhang W#, Wu K-P#, Sartori M, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KB, Lemichez E, Chen J, Tong Y, Harper JW, Rotin D, Moffat J, Schulman BA, Sidhu SS.
    Molecular Cell. (2016), 62, 121-136.
    #: Equally contributed authors
  6. ITCH WW domains inhibits E3 ubiquitin ligase activity by blocking E2-E3 transthiolation.
    Riling C, Kamadurai HB, Kumar S, O’Leary CE, Wu K-P, Marino EE, Ying M, Schulman BA and Oliver PM.
    J. Biol. Chem. (2015). 290, 23875-23887

Research papers when studied in Rutgers University (New Brunswick, New Jersey, US)

  1. Unveiling transient protein-protein interactions that modulate inhibition of alpha-synuclein aggregation by beta-synuclein, a pre-synaptic protein that co-localizes with alpha-synuclein
    Janowska M, Wu K-P and Baum J.
    Scientific Reports. (2015), 5, 15164
  2. ACA-specific RNA sequence recognition is acquired via the loop 2 region of MazF mRNA interferase.
    Park JH, Yoshizumi S, Yoshihiro Y, Wu K-P and Inouye M.
    Proteins. (2013), 81, 874- 883
  3. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility.
    Kobayashi H, Swapna GV, Wu K-P, Afinogenova Y, Conover K, Mao B, Montelione GT and Inouye M
    J. Biomol. NMR (2012), 52, 303-313
  4. Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins.
    Kim S, Wu K-P and Baum J.
    J Biomol NMR. (2013), 55, 249-256
  5. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli.
    Masuda H, Tan Q, Awano N, Wu K-P, and Inouye M.
    Mol Microbiol. (2012), 84, 979-89.
  6. Investigation of the polymeric properties of alpha-synuclein and comparison with NMR experiments: a replica exchange molecular dynamics study.
    Narayanan C, Weinstock DS, Wu K-P, Baum J and Levy RM.
    J Chem Theory Comput. (2012), 8, 3929-3942
  7. The A53T mutation is key in defining the differences in the aggregation kinetics of human and mouse alpha-synuclein.
    Kang L, Wu K-P, Vendruscolo M and Baum J.
    J. Am. Chem. Soc. (2011), 133, 13465-13470
  8. Backbone assignments and dynamics of alpha-synuclein in viscous 2 M glucose solution.
    Wu K-P and Baum J.
    Biomolecular NMR Assignments (2011), 5, 43-46
  9. Detection of transient interchain interactions in the intrinsically disordered protein alpha-synuclein by NMR paramagnetic relaxation enhancement.
    Wu K-P and Baum J.
    J. Am. Chem. Soc. (2010), 132, 5546-5547
  10. Structural reorganization of alpha- synuclein at low pH observed by NMR and REMD simulation.
    Wu K-P, Weinstock DS, Narayanan C, Levy RM and Baum J.
    J. Mol. Biol. (2009), 391, 784-796
  11. Characterization of conformational ensemble of natively unfolded human and mouse alpha-synuclein: implication for aggregation.
    Wu K-P, Kim S, Fela DA and Baum J.
    J. Mol. Biol. (2008), 378, 1104-1115
  12. Distinguishing among structural ensembles of the GB1 peptide: REMD simulations and NMR experiments.
    Weinstock DS, Narayanan C, Felts AK, Andrec M, Levy RM, Wu K-P and Baum J.
    J. Am. Chem. Soc. (2007), 129, 4858-4859

Research papers in Taiwan (before 2006)

  1. Novel solution structure of porcine beta-microseminoprotein.
    Wang I, Lou YC, Wu K-P, Wu SH, Chang WC and Chen C.
    J. Mol. Biol. (2005), 346, 1071-1082
  2. Letter to editor: 1H, 13C and 15N assignments and secondary structure of mourine angiogenesis 4.
    Pan YR, Wu K-P, Lou YC, Liao YD and Chen C.
    J Biomol NMR (2005), 31, 175-179
  3. Structural basis of a Flavivirus recognized by its neutralizing antibody: Solution structure of the domain III of the Japanese Encephalitis virus envelope protein.
    Wu K-P, Wu CW, Tsao YP, Kuo TW, Lou YC, Lin CW, Wu SC and Cheng JW.
    J. Biol. Chem. (2003), 278, 46007-46013.

Protein structures determined by me (before 2017)

Protein informationPDB IDReference
The domain III of the Japanese Encephalitis virus envelope protein1PJWJBC (2003)
Ecoli periplasmic dimeric protein YmgD
(monomeric subunit: 2LRV)
2LRM unpublished
NEDD4L HECT domain and its cognate ubiquitin variant NL.15HPKMolecular Cell (2016)
Rsp5 HECT domain and its cognate ubiquitin variant R5.45HPLMolecular Cell (2016)
WWP1 HECT domain and its cognate ubiquitin variant P1.15HPSMolecular Cell (2016)
WWP1 HECT domain, UBCH7 and its cognate ubiquitin variant P2.35HPTMolecular Cell (2016)